PHYSICAL REVIEW E 68, 046302 (2003
Dynamo effect in a driven helical flow
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The Roberts flow, a helical flow in the form of convectionlike rolls, is known to be capable of both kinematic
and nonlinear dynamo action. We study the Roberts dynamo with particular attention being paid to the spatial
structure of the generated magnetic field and its back-reaction on the flow. The dynamo bifurcation is deci-
sively determined by the symmetry group of the problem, which is given by a subgroup of discrete transfor-
mations and a continuous translational invariance of the flow. In the bifurcation the continuous symmetry is
broken while the discrete subgroup symmetry completely survives. Its actions help in understanding the spatial
structures of the magnetic field and of the modified flow. In accordance with experimental observations, the
magnetic field component perpendicular to the originally invariant direction is much stronger than the com-
ponent in this direction. Furthermore, the magnetic field is largely concentrated in layers separating the
convectionlike rolls of the flow and containing, in particular, its stagnation points, which are isolated for the
modified flow while they are line filling for the original Roberts flow. The magnetic field is strongest near
B-type stagnation points, with a two-dimensional unstable and a one-dimensional stable manifold, and is weak
near a-type stagnation points, with a two-dimensional stable and a one-dimensional unstable manifold. This
contrasts with the usual picture that dynamo action is promoted at thants and impeded at th@ points.

Both the creation of isolated stagnation points and the concentration of strong fields@ptiets may be
understood as a result of the way in which the Roberts dynamo saturates. It is also found that, while the
original Roberts flow is regular, the modified flow is chaotic in the layers between the convectionlike rolls
where the magnetic field is concentrated. This chaoticity, which results from the back-reaction of the magnetic
field on the flow, appears to merely enhance magnetic diffusion rather than to strengthen the dynamo effect.
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[. INTRODUCTION retically by a set of nonlinear partial differential equations
including the Navier-Stokes equatighlSE), the magnetic
Long-lasting magnetic fields are a phenomenon that cainduction equation, the heat equation, and the thermody-
be observed in many objects and on widely varying scales iamic equation of state. In order to analyze the dynamo pro-
our Universe. In most cases the only tenable explanation d§ess in isolation from other processes, we shall study the
their origin is induction by the motion of electrically con- Problem in the framework of incompressible MHD with the
ducting fluids. The geomagnetic field with its irregular rever-fluid motion driven by an external mechanical body force.
sals, the much stronger magnetic fields in the active region¥/e Wish to note, however, that there exist numerous studies
on the Sun and the weak interstellar fields on the scale o?f more complex and more realistic models, in particular,
galaxies are well-known examples. Despite their differentvhere the dynamo is driven by convection, as is presumably
appearance, all these fields are presumably generated aite case for the Earth and the Sun. For reviews discussing
maintained by similar magnetohydrodynanfiMHD) dy-  humerical simulations of convection-driven dynamos we re-
namo processes. The theoretical study of MHD dynamos hd€r to [10:6113-. .
a long research history; for comprehensive reviews we refer The governing equations for our study are the coupled
to Refs.[1-6]. NSE for the flow and induction equation for the magnetic
Recently a number of successful attempts have been madild in the form
to realize MHD dynamos in laboratory experiments under
terrestrial conditions. Notably groups in Riga and Karlsruhe —v+(v'V)v=V2v—Vp—%VBZ+(B-V)B+f, 1)
have reported the observation of self-excited dynamos in at
their experiment$§7—9]; for reviews on dynamo experiments
in the laboratory see Ref$10-12. These successes are
presently stimulating further experimental efforts. Also the
possibility of a dynamo effect in fast breeder reactors has
found renewed interegtl3,14. Like the cosmic dynamos, V.v=0, V-B=0, 3
also the dynamo experiments pose problems to the theory
and motivate the study of specific aspects of the governingvherev, p, andB denote fluid velocity, pressure, and mag-
equations, aimed at better understanding the nature of theetic field. Pm is the magnetic Prandtl number &ride yet
dynamo processes. unspecified external body force. The third and fourth terms
A real dynamo is characterized by a complex interactionon the right-hand side of Eql) constitute the Lorentz force.
between several physical processes. It can be modeled thelBguations(3) impose the incompressibility condition on the

JB
E-ﬁ—(v-V)B:Pm’lVZB—i—(B-V)v, 2)
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fluid and ensure the source-free property of the magnetithe periodic boundary conditions the pressure term in(Eq.
field. The equations have got this nondimensional form bycan be easily eliminated and its Fourier decomposition is
means of a rescaling transformation based on a length kcaledropped here. The mean flow and the mean magnetic field,
and the associated viscous time scalelL?/v, wherev is i.e., the modes with wave numbk# (0,0,0), are conserved
the kinematic viscositysee Ref[16]). A drawback of this intime and are set equal to zero; these modes are excluded in
rescaling is that the viscous Reynolds number is hidden ithe sums of Eq(4). The fields are real and, hence, the com-
the forcing term. On the other hand, the viscous Reynoldplex mode coefficients have to fulfill the reality conditions
number is essentially determined by the strength of the eXp_=v; and B_, =B} (an asterisk denotes the complex

ternally applied force and its control over the forcing conjugat¢. When we plug the Fourier ansatz in the MHD
strength corresponds to a more experimental approach. Thguations, we obtain an infinite system of ordinary differen-
other free parameter in Eql)—(3), besides the strength of tja] equations(ODES for the time evolution of the coeffi-
the forcing, is the magnetic Prandtl number Pm/ 7, given  cients. However, to make the problem numerically feasible,
by the ratio between kinematic viscosity and magnetic diffu-only a finite number of modes can be taken into account. A
Sivity. truncation gives a finite-dimensional system of ODEs, which
The body forcef on the right-hand side of the NSE, Eq. s eventually the model under consideration. In our numerics
(1), is the sum of all forces that drive the fluid. It pumps we have used a pseudospectral method with 16 grid points in
energy into the system. The question whether, given somgach spatial direction. In Sec. Il we examine, combining nu-
initial seed field, a long-lasting magnetic field can be genermerical calculations with a symmetry analysis, the dynamo
ated, not decaying in the limit of infinite time, represents thepjfyrcation of the driven Roberts flow. Then, in Sec. IlI, we
dynamo problem. study in more detail the spatial structure of the generated
The ABC flow v agc [16-20 (named after Amold, Bel-  magnetic field and the modification of the flow due to the

trami, and Childregsand the Roberts flowg [21-25 are  pack-reaction of the magnetic field. We end with some con-
intensively studied examples of dynamo-effective velocityc|ysions in Sec. IV.

fields. In the following we concentrate on the latter and tie

up to a preceding study of the bifurcations of the externally

driven MHD equations under a body force of the Roberts ll. DYNAMO EFFECT IN AN EXTERNALLY DRIVEN
type [26]. We extend the preceding investigations and de- FLOW OF THE ROBERTS TYPE

scribe the features of the generated magnetic field and its |n the following a dynamo model is studied that is based
feedback to the velocity field. For this purpose we study ingn a flow introduced by Roberf&1,22). This flow is on the
great detail the symmetry breaking effects connected witlhne hand kinematically very dynamo effective. On the other
the onset of the dynamo and the role of different types ohand it resembles the roll solutions of thermal convection. In
stagnation points of the flow. Additionally, we vary the mag-the convective zones of rotating celestial bodies, for in-
netic Prandtl number, which was fixed to the valuePInin  stance, convection rolls parallel to the axis of rotation tend to
Ref.[26], and investigate its influence on the first instability pe formed[27]. These facts have motivated an approximate
of the basic flow. realization of the Roberts flow in a laboratory experiment
Our starting point is the driving velocity field in the form aimed at demonstrating the dynamo effect under terrestrial
of the Roberts flow which can be generated as a stationaryonditions[9,28,29. The experimental setup, with helical
solution of the incompressible NSE, E@) and first of Eqs.  conduits and liquid sodium in a cylindrical vessel, was pro-
(3), if an external body force in the forh= —V?vr is ap-  posed by Bussg30] who also gave a first kinematic analysis
plied. This force compensates viscous losses and generatgsthe Roberts dynamo in a finite domain. Further kinematic
the required flow . Furthermore, together with a vanishing studies related to this experiment are due tallBaet al.
magnetic field, the Roberts flow is a stable solution to thg31-33 and Tilgner[34]. Radler et al. applied mean-field
full MHD equations for small Reynolds numbefsmall  dynamo theory3], whose central mechanism is theeffect.
strengths of the forcing Tilgner used direct numerical simulation of the induction
In the model considered here we impose periodic boundequation. In the kinematic studies system parameters most
ary conditions for the three-dimensional domaif?  suitable for dynamo excitation were determined. The modi-
=[0,27]°, which implies the possibility to use the Fourier fication of the Roberts flowor of the approximate Roberts

expansions flow as realized in the experimgrdue to the back-reaction
of the magnetic field was studied by Tilgner and Busse
_ - " [35,36 (see also discussion in Sec.)lland Raller et al.
v g:zs v(texp(ik-x), [37]. In the following we study the dynamo effect in the
k#0 context of the full MHD equations, taking into account the

nonlinear feedback of the magnetic field to the velocity field.

_ - . The forcing term in Eq(1) is chosen such as to generate the

B(X’t)_kezzg Bi(t)explik-x), ) Roberts flowvg as an exact solution of the incompressible

k#0 NSE. Increasing the forcing strength above the dynamo
) . threshold, we investigate how the flow is changed due to the
wherev, and B, are the complex Fourier coefficients of the back-reaction of the generated magnetic field. Specifically,
velocity field and of the magnetic field, respectively. Due tocertain correlations between the flow structure and the pat-
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ed @ 9 straight lines parallel to the axis. These lines and their
;,' ;’/’—Hs\\ v/ //e<—-‘~‘\: ',: following mutation to chains of isolated stagnation points
. ;:"*\\\ \ ////“‘:\ \ will need special attention in the study of the dynamo
IR LR AN mechanism. . o
IR A Additionally, the Roberts flow is symmetric with respect
TAn } k VYAt to a discrete groups consisting of 16 elements. From the
\ \\-\k;‘f / ¥ i:‘,/r/'/ ! two-dimensional projection of the flow shown in Fig. 1 one

IR BN < a7 could get the impression there were a horizoftglsymme-
N try, namely, symmetry to reflections in the lings=, y

e e e =1, and to the product of these two reflectigtise dihedral

J N 4 /‘N\\\ group D, is the commutative group with three nontrivial
/e N 7 TN elements where each element is inverse to itself and the
e ” v 4 } { by TN \ product of two elements gives the third elemetowever,
I | LU ) all reflectional symmetries are excluded because there is a
NN A T S N nonvanishing kinetic helicity, which as a pseudoscalar would
l** :\—V’// A \\\&K‘f 5 change its sign under reflections. Actually the third compo-
E < T A P A N L ,{ nent of the flow has to be taken into account as well. Though
0@ @ @ independent og, the flow has a nonvanishing component in

0 2n the z direction; neighboring vortices spiral in opposite direc-
tions (but all vortices or rolls possess the same heljcity
fact, the discrete group can be characterized as a semidirect
product D,X ¢Z,. The groupD, corresponds to rotations
tern of the generated magnetic field are analyzed. about thex, y, andz axes by the angler and is a normal
subgroup. The cyclic grouZ, is the group of rotations
which leave the square invariant, generated by a rotation
about thez axis by the angler/2. But to leave the Roberts
The Roberts flow is given as a family of three- flow invariant this rotation has to be combined with a shift
dimensional velocity fields which are independent of thepy 7 in the x direction, in order to take into account the
(Cartesiajh z coordinate, namely, opposite, vertical flow directions in neighboring vortices.
Nevertheless, the group is isomorphic, i.e., formally equiva-
lenttoZ,. A more detailed description of the group structure

whereg andf are free parameters characterizing the stren tr?f G can be found in the Appendix.
g P 9 g Finally, the MHD equations are invariant with respect to

of the horizontal and vertical velocity components. To givethe special transformatioB— —B. o—p. This 7, svmme-
an impression of the flow structure, a projection of the V€ir Ig s an essential role in the'svmmvétr bre;kix bifurca-
locity vectors on the-y plane is plotted in Fig. 1. The flow y piay Y y 9

consists of an array of rolls where the fluid spirals up anc{)'on' Thus the whole equivariance group of the problem can

down in neighboring rolls. It has a helical structure with a e summarized now as

nonzero kinetic helicitH=[qv -V Xv d®x. A nonvanishing (DyX oZ4) X SIX Z,. (6)
kinetic helicity is well known to be favorable for the large-
scale dynamo action of small-scale velocity figlds38—4Q.

With respect to small-scale dynamos, where the magnetic
field and the velocity field vary on comparable scales, a cor- In the first step we perform a linear stability analysis of
relation between helicity and dynamo action has been denthe MHD equations, Eqg1)—(3), with an external force of
onstrated at least for certain flow families, e.g., generalizedhe Roberts type,

ABC flows [41].

FIG. 1. Projection of the Roberts flow on they plane. Black
dots indicate stagnation points of the flow.

A. Roberts flow

vr=(gsinx cosy, —g cosx siny, 2f sinx siny), (5

C. Linear stability analysis for varying Prandtl number

f=—V2vR=2vR. (7)

B. Symmetry analysis The parameterg andf of the Roberts flow in Eq(5) are set

The appearance of the dynamo is accompanied by synequal to each other, that ig,=f=Re. The Reynolds-like
metry breaking. In a first step, thus, the symmetry group ohumber Re measures the strength of the external force or,
the problem has to be determined, i.e., the equivariancequivalently, the amplitude of the generated Roberts flow.
group of the MHD equations, Eq&l)—(3) (for a review of  The magnetic Prandtl number is varied between<(Ph
the role of symmetries in bifurcations we refer to Ref2]). =<1.0. As already mentioned, the Roberts flow with zero
This group is decisively determined by the symmetry of themagnetic field is the only stable solution for small values of
external forcing or equivalently by its defining flow, the Rob- Re. By computing the eigenvalues of the Jacobian matrix of
erts flowvr. The Roberts flow is translationally invariant in the equations linearized about the Roberts flow, the first in-
the z direction. Due to our periodic boundary conditions this stability of the Roberts flow solution is determined. The cal-
continuous symmetry is isomorphic to the circle grdslp  culations are done in Fourier space using a pseudospectral
The stagnation points indicated by black dots in Fig. 1 fillcode with 16 grid points in each spatial direction. Figure 2
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15 ' ' Sweetet al.[43], also for the case of small magnetic Prandtl

I ] numbers. These authors, who studied the scaling behavior of
the bursts with respect to the magnetic Reynolds number,
explained the phenomenon as a result of blowout bifurca-
tions.

Re

D. Symmetry breaking bifurcations

5 - Next we study in more detail the dynamo generation for
- 1 the special Prandtl number Pni which is representative

for the qualitative solution behavior for Pr0.78, cf. Fig. 2.

As already mentioned in the preceding section, the primary

0 e Roberts flow loses its stability by a symmetry breaking pitch-
0.5 0.6 0.7 0.8 0.9 1.0 fork bifurcation where two real eigenvalues become equal to
Pm zero. New stationary solution branches with nonvanishing

) . ) ) magnetic fields bifurcate. The dynamo operating here will be
FIG. 2. Linear stability analysis of the primary Roberts flow. 5jed Roberts dynamo. Like for the ABC dynamo, a se-
The solid line marks a magnetic instability whereas the dashed "n‘auence of bifurcations finally leads to chaos. A detaiied dis-
gives an instability of the flow in which no magnetic components -, cqjon of these transitions has already been given in Ref.
are excited. [26]. In the following we focus on the first, symmetry-

shows the result of the linear stability analysis. The solid linebreaking bifurcation. We investigate the structure of the mag-
marks a steady-state bifurcation in which two real eigenvalhetic field and its influence on the velocity field after the
ues go through zero. These eigenvalues belong to a magnefigset of the dynamo. Two real eigenvalues of the Jacobian
mode which generates a dynamo for PM78. For smaller Mmatrix become equal to zero and the associated two-
Prandtl numbers the Roberts flow becomes unstable by dimensional linear eigenspace consists of purely magnetic
symmetry breaking Hopf bifurcation where the real parts ofmodes where one can be transformed into the other by a shift
two pairs of complex conjugate eigenvalues become zerdn thezdirection. The magnetic eigenmodes have wave num-
This instability does not produce a dynamo but generates Berk,=1, that is, they are dependent with the maximum
nonmagnetic time-periodic modified flow. It is remarkable wavelength 2r. The bifurcation generates a family of new,
that the value of the Reynolds number at which the Hopfdynamo-active steady states. The original continuds (
bifurcation occurs, namely, Rel10.1, is independent of the Symmetry is broken and now both the magnetic field and the
magnetic Prandtl number. However, this is explained by thdlow depend on the coordinate. Any translation in the

fact that the magnetic Prandtl number cannot influence théirection leads to an equivalent solution of the steady-state
flow as long as the magnetic field is absent. family.

Investigations of the nonlinear dynamics give a steady- The discrete symmetry groug X sZ,) X Z, survives the
state dynamo above the thick solid line in Fig. 2 and a timebifurcation and determines the spatial structure of the modi-
periodic flow with a zero magnetic field above the thick fied flow and of the generated magnetic field. But the actions
dashed line. The dynamics in the vicinity of the point of of this discrete group must now be given in a modified form
intersection of the two curves is rather complex and not th&ompared to the original symmetry transformations de-
topic of the present investigations. The dynamo effect forscribed in Sec. Il B. Specificallyz translations have to be
Pm>0.78 is qualitatively the same for all those values ofadded to most of the original transformations. This is a rem-
Pm. The dynamo bifurcation for Pail.0 is described in hant of theS' symmetry, that is to say, the new actions of the
more detail in the following sections. group D,XgZ4)XZ, correspond to a discrete subgroup

A remaining question then is whether there exists a dysymmetry of the original D,XsZ,)XZ,xS" symmetry.
namo for Pm<0.78 and larger values of Re as a result of aThey are really nontrivial and their knowledge gives infor-
secondary bifurcation of the modified flow. For smaller val-mation on the spatial structure of the fields.
ues of Pm the increased magnetic diffusivity works against The transformatio8— —B, v —uv (corresponding to the
the dynamo. Thus, for Pm0.4 we did not see any dynamo Z, symmetry has to be combined with a translation in the
effect. However, for the interval 0s5Pm=<0.78 dynamo ac- direction by . Under this translation the-y projection of
tivity in the form of intermittent bursts is observed. The driv- the magnetic field vector rotates by an angle of 180° about
ing flow is at first nearly time periodic and feeds slowly all the z axis (and describes one complete rotation about the
scales of the magnetic field which finally results in strongvertical z axis over the fullz period 27). The simulations
magnetic bursts. During the bursts the magnetic field and thehow a three-dimensional magnetic field with nonvanishing
velocity field are interacting in a chaotic manner. This dy-components in all three spatial directions. But theompo-
namo activity is rather short and a relaminarization procesgent is weak in comparison to the horizontal fi¢lde pro-
extinguishes the dynamo. The dynamics of the velocity fieldection on thex-y plang, which will be denoted here as the
becomes regular and the cycle starts again. We could nanain field. Thus, the action of th&, symmetry on the main
classify this dynamics as a result of a local bifurcation. How-field gives a first impression of its spatial structure: it rotates
ever, a similar behavior was found for the ABC dynamo byunder translations in thedirection as described above.
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/: > O ® genvalues of the matrice; = dv; / 9xj| =, wherex, is the
# / =O/'“ position of a stagnation point. There are eight stagnation
/ /’ points with two negative eigenvalues and one positive eigen-
’ >0 < s $ | value and eight stagnation points with opposite signs of the
>@ < eigenvalues. Following the terminology introduced by Dom-
V/'O 4 #/O bre et al. [44], stagnation points with two negative eigenval-
/’< I > @ ues (—,—,+) are denoted as af type and such with one
o 3 > @< O/T negative eigenvalue—,+,+) as of 8 type.
® 4 >Oe ‘ The symmetry breaking bifurcation produces a family of
4 v,/ |/"“ equivalent solutions which can be obtained from one of them
O« »O by translations in the direction. We have selected one solu-

X

tion here by choosing the coordinates y=2z=0 for one of
the a-type stagnation points.

Now the actions of the survivin@, symmetry for the
selected solution are given: These actions are rotations by
about thex, y, andz axes, combined with translation byin

G

\ >
—_—r P
A\O
\O\VV
>®
A
O\V
L > @—

O 3 =g < v the z direction for the rotations about theand z axes(but
o »O< | ° without such a translation for the rotation about thaxis).
O v R O/ Obviously, these transformations form reallyDs, group.
"/ N /1. ""/ The translations in thedirection in the cases of the rotations
® > QO « o about thex and z axes are necessary to transform the mag-

. ) ) ) ~netic field into itself; the rotation of the horizontal field about
_FIG. 3. Stagnation points and their connecting heteroclinic orthe 7 axis is described above. For the selected solution the
bits after the bifurcation. FuII_bIack_dotsz-type stagnation points.  orizontal magnetic field in the origin is parallel to tiye
Empty circles:5-type stagnation points. axis. For other solutions of the family, obtained biransla-
) ) __ tions, the actions of the group are different, leading to con-
The rotation of the horizontal average of magnetic f'e|dvjugate subgroups of typD,. A complete description of the

which because oV -B=0 is purely horizontal, is a well-  actions of the symmetry group in terms of coordinates is
known characteristic of the kinematic Roberts dyng@@-  given explicitly in the Appendix.

25]. In the kinematic case just one vertical wave number
+k, is excited and the horizontally averaged or mean field
rotates without changing its modulus and proportionallyg to
in a spiral-staircase-like fashion about thexis. This rota-
tion of the mean field is an essential ingredient in heuristic In this section we shall try to give an idea of the structure
models of the Roberts dynamo and in the search for kineef the magnetic field after the onset of the dynamo and of the
matically growing modes it was generally assumed at théack-reaction of the magnetic field on the flow; some prop-
outset. erties of the magnetic field and of the flow were already
Also the generating transformation of tdg symmetry is  given in connection with the symmetries in Sec. 1l D. The
modified compared to the corresponding original transformaflow is modified by the influence of the Lorentz force. It has
tion for the undisturbed Roberts flow with vanishing mag-got 16 saddle-type stagnation points, classified according to
netic field. A translation in the direction by 7/2 has to be the signs of their eigenvalues as®br B type. The skeleton
added to the original transformatidrotation about the axis  of the modified flow is sketched in Fig. 3.
by 7/2 and shift in thex direction by ). There is a close correlation between the location of these
The action of the survivindd, symmetry, finally, is more stagnation points and the regions of strong magnetic fields.
subtle. Before giving this action we characterize the deFigure 4 shows a surface-level plot of the modulus of the
formed flow after the onset of the dynamo. Of particularmagnetic field. Bright gray tones indicate regions of strong
interest are the stagnation points of the flow, around whichmagnetic fields. Comparing this figure with Fig. 3, one rec-
strong magnetic fields are concentrated. Due to the translagnizes that regions of strong fields enclose the stagnation
tional invariance in the direction, the original Roberts flow points of 8 type. Similarly the field is weak in the neighbor-
possesses lines of stagnation points, which are connected hpod of the stagnation points ef type. A correlation be-
a family of heteroclinic orbitgsee Fig. 1 The bifurcation tween the stagnation points and the regions of strong mag-
splits these lines up into a discrete set of 16 stagnation pointsetic fields has already been found for the ABC dynamo
within the periodicity boxQQ=[0,27]%. A skeleton of the [16,20. However, for the ABC dynamo the strong magnetic
stagnation points together with the connecting heteroclinidields are concentrated around thetype stagnation points.
orbits after the bifurcation is sketched in Fig(fdr counting ~ What is the reason for this contrasting behavior of the two
the stagnation points the periodicity has to be taken intalynamos?
account. To elucidate this point, it is helpful to compare the non-
The stagnation points can be classified by the eigenvaludmearly saturated, steady magnetic field with kinematically
of the linearized flow fields in their vicinity, i.e., by the ei- generated ones, obtained by solving the magnetic induction

Ill. SPATIAL STRUCTURES OF THE MAGNETIC
AND VELOCITY FIELDS
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an effect known as flux expulsion, and is accumulated in
layers which separate counterrotating rolls and contain the
stagnation points. For the kinematic Roberts dynamo and the
limit of large magnetic Reynolds numbésmall magnetic
diffusivity), the generation of magnetic fields confined to
these layers, which are very thin for large magnetic Reynolds
number, has been studied using boundary layer methods
[23-25,48.

Tilgner and Bussd35] studied the modification of the
Roberts flow due to the Lorentz force in the frame of a mean-
field model. They decomposed the magnetic field into the

mean fieldB=Bg(coskzsinkz0) and the residugb=B—B
and used linearized equations forand the velocity pertur-
bation tovg. The resulting modified velocity field is of the
form v=(1-y)vg+tuv,, wherey=0 andv,=0 for B=0.
v4 varies sinusoidally in all three spatial directions. Its hori-
zontal wave numbers are those wf, there being a phase
shift of 7/2 with respect tawg in both horizontal directions,
__and its wave number in thedirection is X. If we translate
FIG. 4. Surface-level plot of the modulus of the magnetic field

|B|. Bright gray tones indicate regions of strong magnetic fieldthls to our model, thei Corre_sponds to the Fourller compo-
while dark regions correspond to weak fields. nent with wave vectok=(0,0,+ 1) andv, to that with wave
vectork=(+1,51,%2). For the velocity field in the satu-
equation, Eq(2), with the flowwv prescribed. The field gen- rated steady state we find the mode 1,+1,+2) to be
erated kinematically by the undisturbed Roberts flow  clearly excited(among the modes with the same horizontal
looks already very much like the nonlinearly saturated onewave numbers asg, i.e, ¥ 1, it is the second largest after
with, in particular, alternating strong-field and weak-field re-that corresponding tog). Its superposition withy; already
gions as shown in Fig. 4, though the flow is independeiat of gives the basic structure of the flow with its alternation of
We have, then, done additional kinematic simulations by taktype« and typeg stagnation points. Thus the modified
ing the flow that was obtained as final, steady state in thélows in the mean-field model of Tilgner and Busse and in
nonlinear simulations of the full MHD equations as pre-our calculations have the same basic structure.
scribed velocity field. Again, the kinematically generated The back-reaction of the magnetic field by the Lorentz
field showed the alternation of strong-field and weak-fieldforce modifies the Roberts flow in a way fully analogous to
regions and, interestingly, the regions of strong fields weravhat happens in a perturbed integrable Hamiltonian system.
located at thex type and the regions of weak fields at the According to the Kolmogorov-Arnold-MoseiKAM) theo-
B-type stagnation points of the flow. This is in accordancerem [46], more and more KAM tori breakup when the
with the usual picturd19,45 that, through forming and strength of the perturbation is increased. In our case the per-
stretching ropelike field structures, dynamo action is pro{urbation is caused by the onset of the dynamo and its
moted at thex points, while at the3 points local expansion strength is controlled by the forcing parameter. As a result of
in the flow leads to more diffuse structures. the process of torus destruction, chaotic layers, that is, re-
Thus, the fact that in the nonlinear Roberts dynamo thegions with chaotic streamlines, are generated, sandwiched
field is strong at the8 and weak at ther points must result between surviving KAM tori. This is the general case where
from the way in which the dynamo saturates. The simplesta perturbation destroys the integrability of a system. In order
though not very detailed, explanation is this: In the kinematicto identify chaotic and regular regions, visualization by
phase, the undisturbed Roberts flow generates a field witmeans of Poincareections is an appropriate tool. Starting
alternating strong-field and weak-field regions. The backfrom a set of initial points, the flow lines are traced and their
reaction of the generated magnetic field on the flow by thepoints of intersection with a fixed plane sampled. This pro-
Lorentz force sets in first where the field is strong. The Lor-cedure is equivalent to the tracking of passive tracers moving
entz force in the strong-field regions acts such as to impedeith the flow. Figure 5 shows a Poincasection of the modi-
dynamo action by generating isolate@;type stagnation fied velocity field after the onset of the dynamo. The
points of the flow. The formation of the-type stagnation plane atz=0 is the cutting plane and the points shown cor-
points may then be understood as a consequence of thiggspond to trajectories started from points distributed ran-
since matter ejected from th@ points along the positive and domly in the periodicity cube. One recognizes the regular
negativez directions meets in the weak-field regions to form structure in the interior of the driven rolls where the velocity
stagnation points with inflow from the positive and negativereaches its maximum value. The outer parts of the original,
z directions. unperturbed rolls have been replaced by a chaotic layer. This
Figure 4 also shows that the magnetic field is very weakayer looks rather homogeneous in Fig. 5, but a closer ex-
inside the driven convectionlike rolls where it reaches itsamination reveals that it consists of sublayers which in turn
minimal value. The magnetic field is pushed out of the rolls,are separated by preserved KAM regions. Detailed descrip-
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2Pip streamlines by oneself is not sufficient for a dynamo. On the
contrary, the chaoticity of a flow in general only enhances
magnetic diffusion, which counteracts the dynamo. The
chaoticity of the modified Roberts flow is a secondary effect
and appears to merely enhance magnetic diffusion, rather

than to strengthen the dynamo effect.

> Pifs IV. CONCLUSION

The dynamo bifurcation of the Roberts flow is decisively
determined by the symmetries of the problem, i.e., by the
symmetry group of the incompressible MHD equations with
Roberts forcing. This group is given by a subgroup of dis-
crete transformations and the continuous translational invari-
ance of the flow. In the bifurcation the continuous symmetry
e : < is broken while the discrete subgroup symmetry completely
0 Pi 2Pi survives the bifurcation. Its actions give information on the
spatial structure of the dynamo-generated magnetic field and

FIG. 5. Poincaresection of the modified flow after the onset of On the flow, which is modified compared to the original Rob-
the dynamo with the-y plane atz=0 as cutting plane. erts flow due to the back-reaction of the magnetic field.

In particular, the action of a surviving, symmetry, stem-
tions of the fractal nature of this kind of pattern may beming from the invariance of the MHD equations with respect
found in books on Hamiltonian dynami¢47]. As a notice- to the transformationrB— —B, v—wv, reveals a twisted
able effect of the chaoticity of the flow, passive tracers are nstructure of the magnetic field. The magnetic field has a
longer captured in one roll. Tracers moving in the outermosstrong component in the horizontal plane perpendicular to
part of a roll are switching chaotically to neighboring rolls. the originally invariant, vertical direction. On translation in

Another explanation for the origin of the chaotic part of the vertical direction, this horizontal field rotates about the
the flow can be given in terms of the invariant manifolds ofvertical axis. The vertical field component is relatively weak
the fixed points. The heteroclinic orbits of the Roberts flow,compared to the horizontal one. A decomposition of the mag-
namely, the straight line segments parallel to xhar y axis  netic field into a strong horizontal and a small vertical com-
which connect neighboring stagnation points, survive the biponent(fluctuating due to turbulengevas also measured in
furcation, as shown in Fig. 3. Also shown in Fig. 3 are newthe Karlsruhe dynamo experime[]. Despite the idealiza-
heteroclinic orbits parallel to theaxis, coinciding with seg- tions of the model considered here, there is a good agreement
ments of the lines originally filled with stagnation points. between theory and experiment at least with respect to this
The heteroclinic orbits form the one-dimensional unstablespecial property of the dynamo.
manifolds of thea points and the one-dimensional stable Due to flux expulsion, the magnetic field is largely con-
manifolds of theB points. The symmetry of the flow implies centrated in layers separating the convectionlike rolls of the
that the heteroclinic orbits are straight line segments. Howflow. These layers contain, in particular, the stagnation
ever, the two-dimensional stable manifolds of thegyoints  points. In contrast to the original Roberts flow, whose stag-
and the two-dimensional unstable manifolds of theoints,  nation points fill vertical lines, the stagnation points of the
which are spanned by the heteroclinic lines, are not pieces ahodified flow are isolated and either aftype, with a two-
planes but curved surfaces. We suppose that like for the ABdimensional stable and a one-dimensional unstable manifold,
flow discussed by Dombret al.[44], there exists an infinite or of B type, with a two-dimensional unstable and a one-
number of intersections between stable and unstable maniimensional stable manifold. It is found that the magnetic
folds for the modified Roberts flow. We suppose further thaffield is strongest in regions around tf8epoints and compa-
the closure of this set generates a horseshoe dynamicably weak at ther points. This contrasts with results for the
[47,48 which in turn is the germ of the chaotic region. ABC dynamo, where the magnetic field is strongest atdhe

The presence of chaotic regions in the flow, where nearbpoints. For the Roberts dynamo considered here, both the
particle trajectories separate at an exponential rate and theeation of isolated stagnation points from the original con-
field lines of frozen-in magnetic fields are correspondinglytinuous line of stagnation points and the fact that the mag-
stretched exponentially, is often considered as favorable fonetic field is strong at th@ points and weak at the points
dynamo action, which just requires stretching of the mag-may be understood as a result of the way in which the dy-
netic field lines. Unlike, e.g., the ABC floj¥4], the undis- namo saturates.
turbed Roberts flow is reguldin no finite region chaotic It is also found that, while the original Roberts flow is
and exponential field line stretching is confined to the stagregular, the modified flow after the bifurcation is chaotic in
nation points. Now the Roberts flow is modified and be-the layers between the convectionlike rolls where the mag-
comes chaotic in finite regions after the onset of the dynammetic field is concentrated. This chaoticity, which results
It must be noted, however, that the presence of chaotirom the back-reaction of the magnetic field on the flow,
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appears to merely enhance magnetic diffusion rather than to TABLE I. The generating transformations of the symmetry sub-
strengthen the dynamo effect. groupsD, andZ,. For the original Roberts flow the translatidn
has to be left off.

APPENDIX ]
Symmetry GeneratoA Rotation Angle T, T,
The symmetries of the incompressible MHD equations subgroup axis
with Roberts forcing are determined by the symmetries of
the Roberts flow, given by Ed5). 10
The invariance of the Roberts flow in thledirection, D, 0 -1 0 X 180°
combined with thez periodicity, gives the continuous circle 0 0 -1 .
symmetrySt. Additionally, the flow is invariant with respect
to a discrete group with the formal structube X sZ,. The
dihedral groupD,, is given by the three rotations by 180° 100 0
about thex, y, andz axes. It is a normal subgroup in the 0o -1 0 z 180° 0
semidirect product. The group, is the cyclic group of ro- 0O 0 1 T
tations which leave the square invariant. In its action on the
Roberts flow it is generated by a rotation about ztexis by
90° combined with a shift in the direction bys. In general, 0 -1 0 o 0
the discrete transformations leaving the Roberts flow invari- .
ant consist of a rotatioA and a translatio, : 4 z 90 0 0
2
x' X
y' | =Al Y| +T,. (A1)
z' z (DX gZ4) X Z,X St (A4)

Equation(A1) describes a mapping of the position vector ~ After the onset of the dynamo tt& symmetry is broken
:(X,y’z) on the position vectok’ :(X’,y’,z’)_ The tran- and both the Ve|0CiW field and the generated magnetic field

formed fieldsv’,B’ are given by depend on the coordinate. The symmetry to the discrete
subgroup D, X gZ,4) X Z, survives the bifurcation. However,
v'(xX')=Av(x), B'(x')=AB(X) (A2) its actions are more subtle now. Both the transformations of
the D,XgZ, group and that of th&Z, group have to be
and invariance of the fields means combined with translations along tlzeaxis. That means, a
. translationT, along thez axis has to be added to the group
v(X)=Av[A" (x=Ty], action in Egs.(A1)—(A3). This is in a certain sense a rem-

nant of the brokerS! symmetry. The generators of the re-
sulting symmetry transformations of th®, X sZ, group are
given as before in Table I, but now with taking into account
the action ofz translationsT, .

The Z, symmetry 8— —B, v—wv) also survives. How-
ever, the transformation has to be combined with a transla-
ilion along thez axis by 7. Thus, after the bifurcation the
equivariant subgroug, is generated by the transformation

B(x)=AB[A 1(x—T,)]. (A3)

The translation along thr axis appears only for the trans-
formations of the groupZ,. The generators of both sub-
groups,D, andZ,, are given in Table I. The last column of
the table has no meaning at this point sirc&anslations

have only to be taken into account after the symmetry brea

ing.
The MHD equations also possesg asymmetry resulting B(X,y,2)— — B(X,y,z+ ),

from their invariance to the transformati@— — B, v—uv.

Thus, the full equivariance group of the problem is given by v(X,y,z)—v(X,y,z+ 7). (A5)
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