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Dynamo effect in a driven helical flow
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The Roberts flow, a helical flow in the form of convectionlike rolls, is known to be capable of both kinematic
and nonlinear dynamo action. We study the Roberts dynamo with particular attention being paid to the spatial
structure of the generated magnetic field and its back-reaction on the flow. The dynamo bifurcation is deci-
sively determined by the symmetry group of the problem, which is given by a subgroup of discrete transfor-
mations and a continuous translational invariance of the flow. In the bifurcation the continuous symmetry is
broken while the discrete subgroup symmetry completely survives. Its actions help in understanding the spatial
structures of the magnetic field and of the modified flow. In accordance with experimental observations, the
magnetic field component perpendicular to the originally invariant direction is much stronger than the com-
ponent in this direction. Furthermore, the magnetic field is largely concentrated in layers separating the
convectionlike rolls of the flow and containing, in particular, its stagnation points, which are isolated for the
modified flow while they are line filling for the original Roberts flow. The magnetic field is strongest near
b-type stagnation points, with a two-dimensional unstable and a one-dimensional stable manifold, and is weak
neara-type stagnation points, with a two-dimensional stable and a one-dimensional unstable manifold. This
contrasts with the usual picture that dynamo action is promoted at thea points and impeded at theb points.
Both the creation of isolated stagnation points and the concentration of strong fields at theb points may be
understood as a result of the way in which the Roberts dynamo saturates. It is also found that, while the
original Roberts flow is regular, the modified flow is chaotic in the layers between the convectionlike rolls
where the magnetic field is concentrated. This chaoticity, which results from the back-reaction of the magnetic
field on the flow, appears to merely enhance magnetic diffusion rather than to strengthen the dynamo effect.

DOI: 10.1103/PhysRevE.68.046302 PACS number~s!: 47.20.Ky, 47.65.1a, 91.25.Cw, 95.30.Qd
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I. INTRODUCTION

Long-lasting magnetic fields are a phenomenon that
be observed in many objects and on widely varying scale
our Universe. In most cases the only tenable explanatio
their origin is induction by the motion of electrically con
ducting fluids. The geomagnetic field with its irregular rev
sals, the much stronger magnetic fields in the active reg
on the Sun and the weak interstellar fields on the scale
galaxies are well-known examples. Despite their differ
appearance, all these fields are presumably generated
maintained by similar magnetohydrodynamic~MHD! dy-
namo processes. The theoretical study of MHD dynamos
a long research history; for comprehensive reviews we r
to Refs.@1–6#.

Recently a number of successful attempts have been m
to realize MHD dynamos in laboratory experiments und
terrestrial conditions. Notably groups in Riga and Karlsru
have reported the observation of self-excited dynamos
their experiments@7–9#; for reviews on dynamo experimen
in the laboratory see Refs.@10–12#. These successes a
presently stimulating further experimental efforts. Also t
possibility of a dynamo effect in fast breeder reactors
found renewed interest@13,14#. Like the cosmic dynamos
also the dynamo experiments pose problems to the th
and motivate the study of specific aspects of the govern
equations, aimed at better understanding the nature of
dynamo processes.

A real dynamo is characterized by a complex interact
between several physical processes. It can be modeled
1063-651X/2003/68~4!/046302~9!/$20.00 68 0463
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retically by a set of nonlinear partial differential equatio
including the Navier-Stokes equation~NSE!, the magnetic
induction equation, the heat equation, and the thermo
namic equation of state. In order to analyze the dynamo p
cess in isolation from other processes, we shall study
problem in the framework of incompressible MHD with th
fluid motion driven by an external mechanical body forc
We wish to note, however, that there exist numerous stu
of more complex and more realistic models, in particul
where the dynamo is driven by convection, as is presuma
the case for the Earth and the Sun. For reviews discus
numerical simulations of convection-driven dynamos we
fer to @10,6,15#.

The governing equations for our study are the coup
NSE for the flow and induction equation for the magne
field in the form

]v
]t

1~v•“ !v5¹2v2“p2 1
2“B21~B•“ !B1f, ~1!

]B

]t
1~v•“ !B5Pm21 ¹2B1~B•“ !v, ~2!

“•v50, “•B50, ~3!

wherev, p, andB denote fluid velocity, pressure, and ma
netic field. Pm is the magnetic Prandtl number andf the yet
unspecified external body force. The third and fourth ter
on the right-hand side of Eq.~1! constitute the Lorentz force
Equations~3! impose the incompressibility condition on th
©2003 The American Physical Society02-1
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fluid and ensure the source-free property of the magn
field. The equations have got this nondimensional form
means of a rescaling transformation based on a length scL
and the associated viscous time scaleT5L2/n, wheren is
the kinematic viscosity~see Ref.@16#!. A drawback of this
rescaling is that the viscous Reynolds number is hidden
the forcing term. On the other hand, the viscous Reyno
number is essentially determined by the strength of the
ternally applied force and its control over the forcin
strength corresponds to a more experimental approach.
other free parameter in Eqs.~1!–~3!, besides the strength o
the forcing, is the magnetic Prandtl number Pm5n/h, given
by the ratio between kinematic viscosity and magnetic dif
sivity.

The body forcef on the right-hand side of the NSE, E
~1!, is the sum of all forces that drive the fluid. It pump
energy into the system. The question whether, given so
initial seed field, a long-lasting magnetic field can be gen
ated, not decaying in the limit of infinite time, represents
dynamo problem.

The ABC flow vABC @16–20# ~named after Arnold, Bel-
trami, and Childress! and the Roberts flowvR @21–25# are
intensively studied examples of dynamo-effective veloc
fields. In the following we concentrate on the latter and
up to a preceding study of the bifurcations of the externa
driven MHD equations under a body force of the Robe
type @26#. We extend the preceding investigations and
scribe the features of the generated magnetic field and
feedback to the velocity field. For this purpose we study
great detail the symmetry breaking effects connected w
the onset of the dynamo and the role of different types
stagnation points of the flow. Additionally, we vary the ma
netic Prandtl number, which was fixed to the value Pm51 in
Ref. @26#, and investigate its influence on the first instabil
of the basic flow.

Our starting point is the driving velocity field in the form
of the Roberts flow which can be generated as a station
solution of the incompressible NSE, Eq.~1! and first of Eqs.
~3!, if an external body force in the formf52¹2vR is ap-
plied. This force compensates viscous losses and gene
the required flowvR. Furthermore, together with a vanishin
magnetic field, the Roberts flow is a stable solution to
full MHD equations for small Reynolds numbers~small
strengths of the forcing!.

In the model considered here we impose periodic bou
ary conditions for the three-dimensional domainV
5@0,2p#3, which implies the possibility to use the Fourie
expansions

v~x,t !5 (
kPZ3

kÞ0

v̂k~ t !exp~ ik•x!,

B~x,t !5 (
kPZ3

kÞ0

B̂k~ t !exp~ ik•x!, ~4!

wherev̂k andB̂k are the complex Fourier coefficients of th
velocity field and of the magnetic field, respectively. Due
04630
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the periodic boundary conditions the pressure term in Eq.~1!
can be easily eliminated and its Fourier decomposition
dropped here. The mean flow and the mean magnetic fi
i.e., the modes with wave numberk5(0,0,0), are conserved
in time and are set equal to zero; these modes are exclud
the sums of Eq.~4!. The fields are real and, hence, the co
plex mode coefficients have to fulfill the reality condition

v̂2k5v̂k* and B̂2k5B̂k* ~an asterisk denotes the comple
conjugate!. When we plug the Fourier ansatz in the MH
equations, we obtain an infinite system of ordinary differe
tial equations~ODEs! for the time evolution of the coeffi-
cients. However, to make the problem numerically feasib
only a finite number of modes can be taken into accoun
truncation gives a finite-dimensional system of ODEs, wh
is eventually the model under consideration. In our nume
we have used a pseudospectral method with 16 grid poin
each spatial direction. In Sec. II we examine, combining n
merical calculations with a symmetry analysis, the dyna
bifurcation of the driven Roberts flow. Then, in Sec. III, w
study in more detail the spatial structure of the genera
magnetic field and the modification of the flow due to t
back-reaction of the magnetic field. We end with some c
clusions in Sec. IV.

II. DYNAMO EFFECT IN AN EXTERNALLY DRIVEN
FLOW OF THE ROBERTS TYPE

In the following a dynamo model is studied that is bas
on a flow introduced by Roberts@21,22#. This flow is on the
one hand kinematically very dynamo effective. On the oth
hand it resembles the roll solutions of thermal convection
the convective zones of rotating celestial bodies, for
stance, convection rolls parallel to the axis of rotation tend
be formed@27#. These facts have motivated an approxima
realization of the Roberts flow in a laboratory experime
aimed at demonstrating the dynamo effect under terres
conditions @9,28,29#. The experimental setup, with helica
conduits and liquid sodium in a cylindrical vessel, was p
posed by Busse@30# who also gave a first kinematic analys
of the Roberts dynamo in a finite domain. Further kinema
studies related to this experiment are due to Ra¨dler et al.
@31–33# and Tilgner @34#. Rädler et al. applied mean-field
dynamo theory@3#, whose central mechanism is thea effect.
Tilgner used direct numerical simulation of the inductio
equation. In the kinematic studies system parameters m
suitable for dynamo excitation were determined. The mo
fication of the Roberts flow~or of the approximate Robert
flow as realized in the experiment! due to the back-reaction
of the magnetic field was studied by Tilgner and Bus
@35,36# ~see also discussion in Sec. III! and Rädler et al.
@37#. In the following we study the dynamo effect in th
context of the full MHD equations, taking into account th
nonlinear feedback of the magnetic field to the velocity fie
The forcing term in Eq.~1! is chosen such as to generate t
Roberts flowvR as an exact solution of the incompressib
NSE. Increasing the forcing strength above the dyna
threshold, we investigate how the flow is changed due to
back-reaction of the generated magnetic field. Specifica
certain correlations between the flow structure and the
2-2
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tern of the generated magnetic field are analyzed.

A. Roberts flow

The Roberts flow is given as a family of thre
dimensional velocity fields which are independent of t
~Cartesian! z coordinate, namely,

vR5~gsinx cosy,2g cosx siny,2f sinx siny!, ~5!

whereg andf are free parameters characterizing the stren
of the horizontal and vertical velocity components. To gi
an impression of the flow structure, a projection of the v
locity vectors on thex-y plane is plotted in Fig. 1. The flow
consists of an array of rolls where the fluid spirals up a
down in neighboring rolls. It has a helical structure with
nonzero kinetic helicityH5*Vv•“3v d3x. A nonvanishing
kinetic helicity is well known to be favorable for the large
scale dynamo action of small-scale velocity fields@3,38–40#.
With respect to small-scale dynamos, where the magn
field and the velocity field vary on comparable scales, a c
relation between helicity and dynamo action has been d
onstrated at least for certain flow families, e.g., generali
ABC flows @41#.

B. Symmetry analysis

The appearance of the dynamo is accompanied by s
metry breaking. In a first step, thus, the symmetry group
the problem has to be determined, i.e., the equivaria
group of the MHD equations, Eqs.~1!–~3! ~for a review of
the role of symmetries in bifurcations we refer to Ref.@42#!.
This group is decisively determined by the symmetry of
external forcing or equivalently by its defining flow, the Ro
erts flowvR. The Roberts flow is translationally invariant i
thez direction. Due to our periodic boundary conditions th
continuous symmetry is isomorphic to the circle groupS1.
The stagnation points indicated by black dots in Fig. 1

FIG. 1. Projection of the Roberts flow on thex-y plane. Black
dots indicate stagnation points of the flow.
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straight lines parallel to thez axis. These lines and thei
following mutation to chains of isolated stagnation poin
will need special attention in the study of the dynam
mechanism.

Additionally, the Roberts flow is symmetric with respe
to a discrete groupG consisting of 16 elements. From th
two-dimensional projection of the flow shown in Fig. 1 on
could get the impression there were a horizontalD2 symme-
try, namely, symmetry to reflections in the linesx5p, y
5p, and to the product of these two reflections~the dihedral
group D2 is the commutative group with three nontrivia
elements where each element is inverse to itself and
product of two elements gives the third element!. However,
all reflectional symmetries are excluded because there
nonvanishing kinetic helicity, which as a pseudoscalar wo
change its sign under reflections. Actually the third comp
nent of the flow has to be taken into account as well. Thou
independent ofz, the flow has a nonvanishing component
thez direction; neighboring vortices spiral in opposite dire
tions ~but all vortices or rolls possess the same helicity!. In
fact, the discrete group can be characterized as a semid
product D23SZ4. The groupD2 corresponds to rotation
about thex, y, and z axes by the anglep and is a normal
subgroup. The cyclic groupZ4 is the group of rotations
which leave the square invariant, generated by a rota
about thez axis by the anglep/2. But to leave the Roberts
flow invariant this rotation has to be combined with a sh
by p in the x direction, in order to take into account th
opposite, vertical flow directions in neighboring vortice
Nevertheless, the group is isomorphic, i.e., formally equi
lent toZ4. A more detailed description of the group structu
of G can be found in the Appendix.

Finally, the MHD equations are invariant with respect
the special transformationB→2B, v→v. This Z2 symme-
try plays an essential role in the symmetry breaking bifur
tion. Thus the whole equivariance group of the problem c
be summarized now as

~D23SZ4!3S13Z2 . ~6!

C. Linear stability analysis for varying Prandtl number

In the first step we perform a linear stability analysis
the MHD equations, Eqs.~1!–~3!, with an external force of
the Roberts type,

f52¹2vR52vR. ~7!

The parametersg andf of the Roberts flow in Eq.~5! are set
equal to each other, that is,g5 f 5Re. The Reynolds-like
number Re measures the strength of the external force
equivalently, the amplitude of the generated Roberts fl
The magnetic Prandtl number is varied between 0.5<Pm
<1.0. As already mentioned, the Roberts flowvR with zero
magnetic field is the only stable solution for small values
Re. By computing the eigenvalues of the Jacobian matrix
the equations linearized about the Roberts flow, the first
stability of the Roberts flow solution is determined. The c
culations are done in Fourier space using a pseudospe
code with 16 grid points in each spatial direction. Figure
2-3
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shows the result of the linear stability analysis. The solid l
marks a steady-state bifurcation in which two real eigenv
ues go through zero. These eigenvalues belong to a mag
mode which generates a dynamo for Pm.0.78. For smaller
Prandtl numbers the Roberts flow becomes unstable b
symmetry breaking Hopf bifurcation where the real parts
two pairs of complex conjugate eigenvalues become z
This instability does not produce a dynamo but generate
nonmagnetic time-periodic modified flow. It is remarkab
that the value of the Reynolds number at which the H
bifurcation occurs, namely, Re510.1, is independent of th
magnetic Prandtl number. However, this is explained by
fact that the magnetic Prandtl number cannot influence
flow as long as the magnetic field is absent.

Investigations of the nonlinear dynamics give a stea
state dynamo above the thick solid line in Fig. 2 and a tim
periodic flow with a zero magnetic field above the thi
dashed line. The dynamics in the vicinity of the point
intersection of the two curves is rather complex and not
topic of the present investigations. The dynamo effect
Pm.0.78 is qualitatively the same for all those values
Pm. The dynamo bifurcation for Pm51.0 is described in
more detail in the following sections.

A remaining question then is whether there exists a
namo for Pm,0.78 and larger values of Re as a result o
secondary bifurcation of the modified flow. For smaller v
ues of Pm the increased magnetic diffusivity works aga
the dynamo. Thus, for Pm,0.4 we did not see any dynam
effect. However, for the interval 0.5<Pm<0.78 dynamo ac-
tivity in the form of intermittent bursts is observed. The dri
ing flow is at first nearly time periodic and feeds slowly a
scales of the magnetic field which finally results in stro
magnetic bursts. During the bursts the magnetic field and
velocity field are interacting in a chaotic manner. This d
namo activity is rather short and a relaminarization proc
extinguishes the dynamo. The dynamics of the velocity fi
becomes regular and the cycle starts again. We could
classify this dynamics as a result of a local bifurcation. Ho
ever, a similar behavior was found for the ABC dynamo

FIG. 2. Linear stability analysis of the primary Roberts flo
The solid line marks a magnetic instability whereas the dashed
gives an instability of the flow in which no magnetic compone
are excited.
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Sweetet al. @43#, also for the case of small magnetic Pran
numbers. These authors, who studied the scaling behavio
the bursts with respect to the magnetic Reynolds num
explained the phenomenon as a result of blowout bifur
tions.

D. Symmetry breaking bifurcations

Next we study in more detail the dynamo generation
the special Prandtl number Pm51 which is representative
for the qualitative solution behavior for Pm.0.78, cf. Fig. 2.
As already mentioned in the preceding section, the prim
Roberts flow loses its stability by a symmetry breaking pitc
fork bifurcation where two real eigenvalues become equa
zero. New stationary solution branches with nonvanish
magnetic fields bifurcate. The dynamo operating here will
called Roberts dynamo. Like for the ABC dynamo, a s
quence of bifurcations finally leads to chaos. A detailed d
cussion of these transitions has already been given in
@26#. In the following we focus on the first, symmetry
breaking bifurcation. We investigate the structure of the m
netic field and its influence on the velocity field after th
onset of the dynamo. Two real eigenvalues of the Jacob
matrix become equal to zero and the associated t
dimensional linear eigenspace consists of purely magn
modes where one can be transformed into the other by a
in thez direction. The magnetic eigenmodes have wave nu
ber kz51, that is, they arez dependent with the maximum
wavelength 2p. The bifurcation generates a family of new
dynamo-active steady states. The original continuous (S1)
symmetry is broken and now both the magnetic field and
flow depend on thez coordinate. Any translation in thez
direction leads to an equivalent solution of the steady-s
family.

The discrete symmetry group (D23SZ4)3Z2 survives the
bifurcation and determines the spatial structure of the mo
fied flow and of the generated magnetic field. But the actio
of this discrete group must now be given in a modified fo
compared to the original symmetry transformations d
scribed in Sec. II B. Specifically,z translations have to be
added to most of the original transformations. This is a re
nant of theS1 symmetry, that is to say, the new actions of t
group (D23SZ4)3Z2 correspond to a discrete subgrou
symmetry of the original (D23SZ4)3Z23S1 symmetry.
They are really nontrivial and their knowledge gives info
mation on the spatial structure of the fields.

The transformationB→2B, v→v ~corresponding to the
Z2 symmetry! has to be combined with a translation in thez
direction byp. Under this translation thex-y projection of
the magnetic field vector rotates by an angle of 180° ab
the z axis ~and describes one complete rotation about
vertical z axis over the fullz period 2p). The simulations
show a three-dimensional magnetic field with nonvanish
components in all three spatial directions. But thez compo-
nent is weak in comparison to the horizontal field~the pro-
jection on thex-y plane!, which will be denoted here as th
main field. Thus, the action of theZ2 symmetry on the main
field gives a first impression of its spatial structure: it rota
under translations in thez direction as described above.

e

2-4
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The rotation of the horizontal average of magnetic fie
which because of“•B50 is purely horizontal, is a well-
known characteristic of the kinematic Roberts dynamo@22–
25#. In the kinematic case just one vertical wave numb
6kz is excited and the horizontally averaged or mean fi
rotates without changing its modulus and proportionally tz
in a spiral-staircase-like fashion about thez axis. This rota-
tion of the mean field is an essential ingredient in heuris
models of the Roberts dynamo and in the search for k
matically growing modes it was generally assumed at
outset.

Also the generating transformation of theZ4 symmetry is
modified compared to the corresponding original transform
tion for the undisturbed Roberts flow with vanishing ma
netic field. A translation in thez direction byp/2 has to be
added to the original transformation~rotation about thez axis
by p/2 and shift in thex direction byp).

The action of the survivingD2 symmetry, finally, is more
subtle. Before giving this action we characterize the
formed flow after the onset of the dynamo. Of particu
interest are the stagnation points of the flow, around wh
strong magnetic fields are concentrated. Due to the tran
tional invariance in thez direction, the original Roberts flow
possesses lines of stagnation points, which are connecte
a family of heteroclinic orbits~see Fig. 1!. The bifurcation
splits these lines up into a discrete set of 16 stagnation po
within the periodicity boxV5@0,2p#3. A skeleton of the
stagnation points together with the connecting heterocl
orbits after the bifurcation is sketched in Fig. 3~for counting
the stagnation points the periodicity has to be taken i
account!.

The stagnation points can be classified by the eigenva
of the linearized flow fields in their vicinity, i.e., by the e

FIG. 3. Stagnation points and their connecting heteroclinic
bits after the bifurcation. Full black dots:a-type stagnation points
Empty circles:b-type stagnation points.
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genvalues of the matricesAi j 5]v i /]xj ux5x0
, wherex0 is the

position of a stagnation point. There are eight stagnat
points with two negative eigenvalues and one positive eig
value and eight stagnation points with opposite signs of
eigenvalues. Following the terminology introduced by Do
breet al. @44#, stagnation points with two negative eigenva
ues (2,2,1) are denoted as ofa type and such with one
negative eigenvalue (2,1,1) as ofb type.

The symmetry breaking bifurcation produces a family
equivalent solutions which can be obtained from one of th
by translations in thez direction. We have selected one sol
tion here by choosing the coordinatesx5y5z50 for one of
the a-type stagnation points.

Now the actions of the survivingD2 symmetry for the
selected solution are given: These actions are rotations bp
about thex, y, andz axes, combined with translation byp in
the z direction for the rotations about thex and z axes~but
without such a translation for the rotation about they axis!.
Obviously, these transformations form really aD2 group.
The translations in thez direction in the cases of the rotation
about thex and z axes are necessary to transform the m
netic field into itself; the rotation of the horizontal field abo
the z axis is described above. For the selected solution
horizontal magnetic field in the origin is parallel to they
axis. For other solutions of the family, obtained byz transla-
tions, the actions of the group are different, leading to c
jugate subgroups of typeD2. A complete description of the
actions of the symmetry group in terms of coordinates
given explicitly in the Appendix.

III. SPATIAL STRUCTURES OF THE MAGNETIC
AND VELOCITY FIELDS

In this section we shall try to give an idea of the structu
of the magnetic field after the onset of the dynamo and of
back-reaction of the magnetic field on the flow; some pro
erties of the magnetic field and of the flow were alrea
given in connection with the symmetries in Sec. II D. T
flow is modified by the influence of the Lorentz force. It h
got 16 saddle-type stagnation points, classified accordin
the signs of their eigenvalues as ofa or b type. The skeleton
of the modified flow is sketched in Fig. 3.

There is a close correlation between the location of th
stagnation points and the regions of strong magnetic fie
Figure 4 shows a surface-level plot of the modulus of
magnetic field. Bright gray tones indicate regions of stro
magnetic fields. Comparing this figure with Fig. 3, one re
ognizes that regions of strong fields enclose the stagna
points ofb type. Similarly the field is weak in the neighbo
hood of the stagnation points ofa type. A correlation be-
tween the stagnation points and the regions of strong m
netic fields has already been found for the ABC dyna
@16,20#. However, for the ABC dynamo the strong magne
fields are concentrated around thea-type stagnation points
What is the reason for this contrasting behavior of the t
dynamos?

To elucidate this point, it is helpful to compare the no
linearly saturated, steady magnetic field with kinematica
generated ones, obtained by solving the magnetic induc

-

2-5
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equation, Eq.~2!, with the flowv prescribed. The field gen
erated kinematically by the undisturbed Roberts flowvR
looks already very much like the nonlinearly saturated o
with, in particular, alternating strong-field and weak-field r
gions as shown in Fig. 4, though the flow is independent oz.
We have, then, done additional kinematic simulations by t
ing the flow that was obtained as final, steady state in
nonlinear simulations of the full MHD equations as pr
scribed velocity field. Again, the kinematically generat
field showed the alternation of strong-field and weak-fi
regions and, interestingly, the regions of strong fields w
located at thea type and the regions of weak fields at th
b-type stagnation points of the flow. This is in accordan
with the usual picture@19,45# that, through forming and
stretching ropelike field structures, dynamo action is p
moted at thea points, while at theb points local expansion
in the flow leads to more diffuse structures.

Thus, the fact that in the nonlinear Roberts dynamo
field is strong at theb and weak at thea points must result
from the way in which the dynamo saturates. The simpl
though not very detailed, explanation is this: In the kinema
phase, the undisturbed Roberts flow generates a field
alternating strong-field and weak-field regions. The ba
reaction of the generated magnetic field on the flow by
Lorentz force sets in first where the field is strong. The L
entz force in the strong-field regions acts such as to imp
dynamo action by generating isolated,b-type stagnation
points of the flow. The formation of thea-type stagnation
points may then be understood as a consequence of
since matter ejected from theb points along the positive an
negativez directions meets in the weak-field regions to for
stagnation points with inflow from the positive and negat
z directions.

Figure 4 also shows that the magnetic field is very we
inside the driven convectionlike rolls where it reaches
minimal value. The magnetic field is pushed out of the ro

FIG. 4. Surface-level plot of the modulus of the magnetic fie
uBu. Bright gray tones indicate regions of strong magnetic fi
while dark regions correspond to weak fields.
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an effect known as flux expulsion, and is accumulated
layers which separate counterrotating rolls and contain
stagnation points. For the kinematic Roberts dynamo and
limit of large magnetic Reynolds number~small magnetic
diffusivity!, the generation of magnetic fields confined
these layers, which are very thin for large magnetic Reyno
number, has been studied using boundary layer meth
@23–25,45#.

Tilgner and Busse@35# studied the modification of the
Roberts flow due to the Lorentz force in the frame of a me
field model. They decomposed the magnetic field into

mean fieldB̄5B0(coskz,sinkz,0) and the residualb5B2B̄
and used linearized equations forb and the velocity pertur-
bation tovR. The resulting modified velocity field is of the
form v5(12g)vR1v1, whereg50 andv150 for B50.
v1 varies sinusoidally in all three spatial directions. Its ho
zontal wave numbers are those ofvR, there being a phase
shift of p/2 with respect tovR in both horizontal directions,
and its wave number in thez direction is 2k. If we translate
this to our model, thenB̄ corresponds to the Fourier compo
nent with wave vectork5(0,0,71) andv1 to that with wave
vector k5(71,71,72). For the velocity field in the satu
rated steady state we find the mode (71,71,72) to be
clearly excited~among the modes with the same horizon
wave numbers asvR, i.e, 71, it is the second largest afte
that corresponding tovR). Its superposition withvR already
gives the basic structure of the flow with its alternation
type-a and type-b stagnation points. Thus the modifie
flows in the mean-field model of Tilgner and Busse and
our calculations have the same basic structure.

The back-reaction of the magnetic field by the Loren
force modifies the Roberts flow in a way fully analogous
what happens in a perturbed integrable Hamiltonian syst
According to the Kolmogorov-Arnold-Moser~KAM ! theo-
rem @46#, more and more KAM tori breakup when th
strength of the perturbation is increased. In our case the
turbation is caused by the onset of the dynamo and
strength is controlled by the forcing parameter. As a resul
the process of torus destruction, chaotic layers, that is,
gions with chaotic streamlines, are generated, sandwic
between surviving KAM tori. This is the general case whe
a perturbation destroys the integrability of a system. In or
to identify chaotic and regular regions, visualization
means of Poincare´ sections is an appropriate tool. Startin
from a set of initial points, the flow lines are traced and th
points of intersection with a fixed plane sampled. This p
cedure is equivalent to the tracking of passive tracers mov
with the flow. Figure 5 shows a Poincare´ section of the modi-
fied velocity field after the onset of the dynamo. Thex-y
plane atz50 is the cutting plane and the points shown co
respond to trajectories started from points distributed r
domly in the periodicity cube. One recognizes the regu
structure in the interior of the driven rolls where the veloc
reaches its maximum value. The outer parts of the origin
unperturbed rolls have been replaced by a chaotic layer. T
layer looks rather homogeneous in Fig. 5, but a closer
amination reveals that it consists of sublayers which in t
are separated by preserved KAM regions. Detailed desc
2-6
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tions of the fractal nature of this kind of pattern may
found in books on Hamiltonian dynamics@47#. As a notice-
able effect of the chaoticity of the flow, passive tracers are
longer captured in one roll. Tracers moving in the outerm
part of a roll are switching chaotically to neighboring rolls

Another explanation for the origin of the chaotic part
the flow can be given in terms of the invariant manifolds
the fixed points. The heteroclinic orbits of the Roberts flo
namely, the straight line segments parallel to thex or y axis
which connect neighboring stagnation points, survive the
furcation, as shown in Fig. 3. Also shown in Fig. 3 are n
heteroclinic orbits parallel to thez axis, coinciding with seg-
ments of the lines originally filled with stagnation point
The heteroclinic orbits form the one-dimensional unsta
manifolds of thea points and the one-dimensional stab
manifolds of theb points. The symmetry of the flow implie
that the heteroclinic orbits are straight line segments. Ho
ever, the two-dimensional stable manifolds of thea points
and the two-dimensional unstable manifolds of theb points,
which are spanned by the heteroclinic lines, are not piece
planes but curved surfaces. We suppose that like for the A
flow discussed by Dombreet al. @44#, there exists an infinite
number of intersections between stable and unstable m
folds for the modified Roberts flow. We suppose further t
the closure of this set generates a horseshoe dyna
@47,48# which in turn is the germ of the chaotic region.

The presence of chaotic regions in the flow, where nea
particle trajectories separate at an exponential rate and
field lines of frozen-in magnetic fields are correspondin
stretched exponentially, is often considered as favorable
dynamo action, which just requires stretching of the m
netic field lines. Unlike, e.g., the ABC flow@44#, the undis-
turbed Roberts flow is regular~in no finite region chaotic!
and exponential field line stretching is confined to the st
nation points. Now the Roberts flow is modified and b
comes chaotic in finite regions after the onset of the dyna
It must be noted, however, that the presence of cha

FIG. 5. Poincare´ section of the modified flow after the onset
the dynamo with thex-y plane atz50 as cutting plane.
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streamlines by oneself is not sufficient for a dynamo. On
contrary, the chaoticity of a flow in general only enhanc
magnetic diffusion, which counteracts the dynamo. T
chaoticity of the modified Roberts flow is a secondary eff
and appears to merely enhance magnetic diffusion, ra
than to strengthen the dynamo effect.

IV. CONCLUSION

The dynamo bifurcation of the Roberts flow is decisive
determined by the symmetries of the problem, i.e., by
symmetry group of the incompressible MHD equations w
Roberts forcing. This group is given by a subgroup of d
crete transformations and the continuous translational inv
ance of the flow. In the bifurcation the continuous symme
is broken while the discrete subgroup symmetry complet
survives the bifurcation. Its actions give information on t
spatial structure of the dynamo-generated magnetic field
on the flow, which is modified compared to the original Ro
erts flow due to the back-reaction of the magnetic field.

In particular, the action of a survivingZ2 symmetry, stem-
ming from the invariance of the MHD equations with respe
to the transformationB→2B, v→v, reveals a twisted
structure of the magnetic field. The magnetic field has
strong component in the horizontal plane perpendicular
the originally invariant, vertical direction. On translation
the vertical direction, this horizontal field rotates about t
vertical axis. The vertical field component is relatively we
compared to the horizontal one. A decomposition of the m
netic field into a strong horizontal and a small vertical co
ponent~fluctuating due to turbulence! was also measured in
the Karlsruhe dynamo experiment@9#. Despite the idealiza-
tions of the model considered here, there is a good agreem
between theory and experiment at least with respect to
special property of the dynamo.

Due to flux expulsion, the magnetic field is largely co
centrated in layers separating the convectionlike rolls of
flow. These layers contain, in particular, the stagnat
points. In contrast to the original Roberts flow, whose st
nation points fill vertical lines, the stagnation points of t
modified flow are isolated and either ofa type, with a two-
dimensional stable and a one-dimensional unstable manif
or of b type, with a two-dimensional unstable and a on
dimensional stable manifold. It is found that the magne
field is strongest in regions around theb points and compa-
rably weak at thea points. This contrasts with results for th
ABC dynamo, where the magnetic field is strongest at thea
points. For the Roberts dynamo considered here, both
creation of isolated stagnation points from the original co
tinuous line of stagnation points and the fact that the m
netic field is strong at theb points and weak at thea points
may be understood as a result of the way in which the
namo saturates.

It is also found that, while the original Roberts flow
regular, the modified flow after the bifurcation is chaotic
the layers between the convectionlike rolls where the m
netic field is concentrated. This chaoticity, which resu
from the back-reaction of the magnetic field on the flo
2-7
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appears to merely enhance magnetic diffusion rather tha
strengthen the dynamo effect.

APPENDIX

The symmetries of the incompressible MHD equatio
with Roberts forcing are determined by the symmetries
the Roberts flow, given by Eq.~5!.

The invariance of the Roberts flow in thez direction,
combined with thez periodicity, gives the continuous circl
symmetryS1. Additionally, the flow is invariant with respec
to a discrete group with the formal structureD23SZ4. The
dihedral groupD2 is given by the three rotations by 180
about thex, y, and z axes. It is a normal subgroup in th
semidirect product. The groupZ4 is the cyclic group of ro-
tations which leave the square invariant. In its action on
Roberts flow it is generated by a rotation about thez axis by
90° combined with a shift in thex direction byp. In general,
the discrete transformations leaving the Roberts flow inv
ant consist of a rotationA and a translationTx :

S x8

y8

z8
D 5AS x

y

z
D 1Tx . ~A1!

Equation~A1! describes a mapping of the position vectorx
5(x,y,z) on the position vectorx85(x8,y8,z8). The tran-
formed fieldsv8,B8 are given by

v8~x8!5Av~x!, B8~x8!5AB~x! ~A2!

and invariance of the fields means

v~x!5Av@A21~x2Tx!#,

B~x!5AB@A21~x2Tx!#. ~A3!

The translation along thex axis appears only for the trans
formations of the groupZ4. The generators of both sub
groups,D2 andZ4, are given in Table I. The last column o
the table has no meaning at this point sincez translations
have only to be taken into account after the symmetry bre
ing.

The MHD equations also possess aZ2 symmetry resulting
from their invariance to the transformationB→2B, v→v.
Thus, the full equivariance group of the problem is given
-
n-

-

-

,
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~D23SZ4!3Z23S1. ~A4!

After the onset of the dynamo theS1 symmetry is broken
and both the velocity field and the generated magnetic fi
depend on thez coordinate. The symmetry to the discre
subgroup (D23SZ4)3Z2 survives the bifurcation. However
its actions are more subtle now. Both the transformations
the D23SZ4 group and that of theZ2 group have to be
combined with translations along thez axis. That means, a
translationTz along thez axis has to be added to the grou
action in Eqs.~A1!–~A3!. This is in a certain sense a rem
nant of the brokenS1 symmetry. The generators of the re
sulting symmetry transformations of theD23SZ4 group are
given as before in Table I, but now with taking into accou
the action ofz translationsTz .

The Z2 symmetry (B→2B, v→v) also survives. How-
ever, the transformation has to be combined with a tran
tion along thez axis by p. Thus, after the bifurcation the
equivariant subgroupZ2 is generated by the transformation

B~x,y,z!→2B~x,y,z1p!,

v~x,y,z!→v~x,y,z1p!. ~A5!

TABLE I. The generating transformations of the symmetry su
groupsD2 andZ4. For the original Roberts flow the translationTz

has to be left off.

Symmetry GeneratorA Rotation Angle Tx Tz

subgroup axis

D2 S1 0 0

0 21 0

0 0 21
D x 180° S0

0

p
D

S21 0 0

0 21 0

0 0 1
D z 180° S0

0

p
D

Z4 S0 21 0

1 0 0

0 0 1
D z 90° Sp

0

0
D S 0

0

p/2
D
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